
The Application of Scalable Distributed Memory Computers to the
Finite Element Modeling of Electromagnetic Scattering

Torn Cwik, Daniel Katz*, Cinzia Zuffada, and Vahraz Jamnejad
Jet Propulsion 1,aboratory

4800 Oak Grove Drive
California Institute of Technology

Pasadena, California, 91109
cwik@jpl.nasa,gov

*Cray Research Inc.
Suite 1406

222 N. Sepulvecia
Iii Segundo, Cal ifornia, 90245

SUMMARY
Large scale parallel computation can bc :tn enabling resource in many areas of engineering

and science if the parallel simulation algorithm attains an appreciable fraction of the machine peak

performance, and if undue cost in porting the code or in developing the code for the parallel

machine is not incurred. The issue of code parallelization is especially significant when

considering unstructured mesh simulations. The unstructured mesh models considered in this

paper result from a finite element simulation of electromagnetic fields scattered from geometrically

complex objects (either penetrable or impenetrable.) The unstructured mesh must be distributed

among the processors, as must the resultant spmc system of linear equations. Since a distributed

memory architecture does not allow direct access to the irregularly distributed unstructured mesh

and sparse matrix data, patli tioning algorithms not needed in the sequential software have

traditionally been used to efficiently spread the data among the processors. This paper presents a

new method for simulating electromagnetic fields scattered from complex objects; namely, an

unstructured finite e]emcnt code that does not use traciitional mesh partitioning algorithms.

The research described in this paper was c,arrimi out at the Jet Propulsion I.aboratory, California Institute of
Technology, under a contract with the Nationai Aeronautics and Space Administration.

1. INTRODUCTION

Large scale parallel computation can bc an enabling resource in many areas of engineering

and science. The available memory capacity and computational speed on large distributed memory

machines can allow the simulation of complicated engineering components if the simulation

algorithm attains an appreciable fraction of the machine peak performance, and if undue cost in

porting the code or in developing the code for the pardlc] machine is not incurred. The issue of

code parallclization is especially significant when considering unstructured mesh simulations. The

unstructured mesh models considered in this paper result from a finite element simulation of

electromagnetic fields scattered from geometrically complex objects (either penetrable or

impenetrable.) The finite element model is used to capture the complex materials involved in the

simulation, and to maintain fidelity of the structure’s geometry. The unstructured mesh must be

distributed among the processors, as must the resultant sparse system of linear equations. Since a

distributed memory architecture does not allow direct access to the irregularly distributed

unstructured mesh and sparse matrix data, partitioning algorithms not needed in the sequential

software have traditionally been used to efficiently spread the data among the processors. This

paper presents a new method for simulating electromagnetic fields scattered from complex objects;

namely, an unstructured finite element code that does not use traditional mesh partitioning

algorithms. The complete software package is implemented on the Cray T3D massively parallel

processor using both Cray Adaptive FORTRAN (CRAFT) compiler constructs to simplify portions

of the code that operate on the it-regular data, and optimized message passing constructs on

portions of the code that operate on regular data and require optimum machine performance.

The finite clement modeling software begins with mesh data constructed on a workstation

using a commercial 1 y available CAD meshing package. Because the electromagnetic scattering

simulation is an open region problem (scattered fields exist in all space to infinity), the mesh must

be truncated at a surface that maintains accuracy in the modeled fields, and limits the volume of free

space that is meshed. Local, absorbing boundary conditions can be used to truncate the mesh, but

these may be problematic because they bccomc more accurate as the truncating surface is removed

from the scatterer, requiring greater computational expense, and they may be problem dependent.

The approach outlined in this paper solves the three-dimensional vector Hclmholtz wave equation,

using a coupled finite element-integral equation method. A specific integral equation (boundary

element) formulation that efficiently and accurately truncates the computational domain is used. A

partitioned system of equations results from the combination of discretizing the volume in and

around the scatterer using the finite element method, and discrctizing the surface using the integral

equation method. This system of equations is solved using a two-step solution, combining a

sparse iterative solver and a dense factorization method. The matrix equation assembly, solution,

2

and the calculation of observable quantities are all computed in parallel, utilizing varying number of

processors for each stage of the calculation.

Various approaches have been taken for parallel implementations of unstructured mesh

simulations. A short and general overview of all stages in the simulation of high temperature

superconductors–mesh generation and refinement, domain partitioning, and linear system

solution+an bc found in [1]. Similarly, approaches have been reported for simulations in

structural mechanics using a coarse grained machine [2] and in a review article for simulations in

fluid dynamics using a data parallel computer [3]. An early implementation of a nodal based finite

element implementation simulating scattered electromagnetic fields on a data parallel computer was

given in [4]. An implementation on a shared vitlual memoly machine of a finite element method

using absorbing boundary conditions, simulating scattered electromagnetic fields was outlined in

[5]. The application of finite volume methods using unstructured meshes for electromagnetic

modeling of both guided wave structures, and scatterers was presented in [6] and [7]. These

approaches either employ specific mesh partitioning algorithms to decompose the mesh onto the

distributed memory machine, or machine architecture and compiler attributes specific to the

computer. In both [1], [2] and [7], bisection partitioning algorithms are used. h [3] and [4], using

a data parallel computer, compiler constructs replace the partitioning algorithms, and in [5] a global

address space available on the Kendall Square Research machine was used to distribute the mesh.

A specialized partitioning algorithm for thin planar structures is employed in [6].

Rather than employing mesh partitioning methods, the emphasis in this work is placed on

decomposition of the resultant sparse matrix entries among the distributed memory processors.

Though there is a relationship between the geometric mesh data and the assembled sparse matrix

entries, it is the sparse matrix that is operated on directly in the iterative solver used in most large

finite element simulations. Specifically, a distributed sparse matrix-dense vector multiply is the

computational component that must be efficiently computed at each step of the iterative algorithm.

It is therefore essential that the decomposition of matrix elements be completed in a manner that

allows an efficient matrix-vector multiply. The row slab matrix decomposition used in this work

strikes a balance between near perfect data and computational load balance among the processors,

minimal but not perfectly optimal communication of data in the matrix-vector multiply operation,

and scalability of simulating larger sized problems on greater numbers of processors.

2. THE COUPI.MD IUNITH 111.IZRIIIN’1-IN’lIIGRAI. E Q U A T I O N MODI?l,

To practically compute a solution to exterior electromagnetic scattering problems, the

domain must bc truncated at some finite surface where the Sommerfeld radiation condition is

enforced, either

using only local

approximately or exactly. Approximate methods attempt to truncate the mesh

field information at each grid point, whereas exact methods are global, needing

3

‘4 1

information from the entire mesh boundary [8]. ‘J’he global method used here couples a threc-

dimensional finite element solution interior to the bounding surface with an efficient integral

equation solution that exactly enforces the Sommerfeld radiation condition. The problem domain is

divided into interior and exterior regions, separated at the mesh boundary (Figure 1). The

unknown sources in the integral equation are directly related to the tangential fields on the mesh

boundary, and the radiation condition is implicitly enforced exactly through the use of the free-

space Green’s function. Fields in the two regions arc coupled by enforcing boundary conditions

on tangential field components at the mesh boundary, thereby producing a unique and exact

solution to Maxwell’s equations in both regions.

The bounding surface chosen is the minimal surface of revolution that fits around the

scatterer. The integral equation is discretized using sub-domain basis functions along the surface

of revolution generator, and Fourier harmonics azimuthally, to greatly limit the storage necessary

in the integral equation component of the model. An outline of this formulation is presented

below. A detailed presentation can bc found in [9], with further results presented in [10]. An

extension to radiation modeling is given in [11].

2.1 Finite Element Representation

In the interior region, a finite element discretization of a weak form of the wave equation is

used to model the geometry and fields, leading to

(1)

~is the magtlctic field (the ~-equation is used in this paper; a dual ~-equation can also be

written), W is a testing function, the asterisk denotes conjugation, and ~ x i is the tangential

component of ~ on the surface of revolut ion S (iW’). Equation (1) represents the fields internal to

and on the surface S. These fields will be modeled using a set of properly chosen finite element

basis functions. In Equation (1), s, and p, are the relative pcrmittivity and permeability,

respectively, and kO and ?]O are free-space wave number and impedance, respectively.

A set of tetrahedral, vector edge elements (Whitney elements) are used to discretize (1),

~~,,,(r-) = 1,,, (r) VA,,(r) – 2,1(r) VA,,,(r) (2)

4

I

SOR Generating

IE

/

‘+4
Surface Coordinates (t, $)

Cu

I

SOR Surface

Figure 1. Geometry of scattering problem showing interior and exterior regions of model.

in which A(r) are the tetrahedral shape

of each edge. These elements are used

finite element domain.

functions and indices (m,n) refer to the two nodal points

for both expansion and testing (Galerkin’s method) in the

2.2 Combined-Field Integral Equation Representation

In the formulation of the integral equation, fictitious electric (~=fix~) and magnetic

(~= -i x ~) surface CLML-CLIK, ~quiva]cnt to the tangential magnetic and electric fields just on the

exterior of the boundary surface, are defined on the boundary. These currents produce the

scattered fields in the exterior region. A linear combination of the electric field integral equation

(EFIE) and the magnetic field integral equation (M1’113) is used in this formulation, and it can be

succinctly expressed as

‘hf[~,,]+zJ[7]=vi (3)

where ‘h/ and ‘J are the intcgro-differential operators used in defining the CFIE, and vi

represents the incident field.

The integral equation on the surface of revolution is discretized by a set of basis functions

with piecewise linear variation along the surface of revolution generator, and with an w,imuthal

Fourier modal variation. Applying Galcrkin’s method, both expansion and testing functions are

given as

(4)

5

in which Tk (t) is a triangle function spanning the k’t’ annulus on the surface of revolution surface.

The variables ? and @ refer to the local surface of revolution coordinates, and p is the distance

from the z-axis to a point on the surface of revolution. Each annulus spans two segments along the

generator, each referred to as a strip. Adjacent triangles overlap on one segment.

2.3 Erlforcing Boundary Conditions

At the a~lificial surface of revolution separating the interior and exterior regions, boundary

conditions on the continuity of tangential field components must be enforced. Three equations are

written for the three unknown field quantities of interest, the magnetic field ~ internal to the

volume V and the electric and magnetic surface currents, ~ and ~, on the boundary. Continuity

of the magnetic field across the boundary is enforced in a weak sense

J.1(fix H-7)o(fixu*)ds=o (5)
N

where u is a testing function. Continuity of the electric field across the boundary is made implicit

in the finite element equation in the surface integral term i x ~ by replacing this term with M.

The surface integral in (1) and the first component of the integral in (5) are termed the

coupling integrals, since with a convenient choice of the unknown in the first and of the testing

function in the second, they are made to couple interior and exterior field representations. To
—

evaluate these terms, the finite element basis function W is evaluated approximately on the portion

of surface of revolution projected from the triangular facet of the tetrahedron onto a strip. Such

projections are curved triangles, curved quadrilaterals, or curved pentagons. The evaluation of the

integrals are done numerically. These coupling integrals, as well as the discretization of the second

surface integral in (5), complete the discretization of the problem

2.4 Numer i ca l Solutiorl of the I.inear Systettl

Having introduced the basis and testing functions for the volume as well as the surface

unknowns, substitution into the complete set of equations yields

KC o 11 0

c+ o z, M = o

0 z,, ZJ J v i

(6)

6

“ ,

where

(7)

The symbol T indicates the adjoint of a matrix. Note that both K and C are sparse, ZO is tri-

diagonal, and ZN1 and Z~ are banded. In particular the system is complex, non-symmetric, and

non-Hern~itian. The sparsity of the system (6) is shown in Figure 2 for a case with only several

hundred finite element unknowns. For larger, representative cases, the number of finite element

unknowns will grow into hundreds of thousands while the number of columns in C will be

several hundred to several thousand.

The parallel solution to this matrix equation system is completed in two steps. Initially H

in the first equation

resulting in

in (6) is written as H = –K-’CM and substituted into the second equation

7.~ Z. M o

25,, ZJ J = vi (8)

where Z~ = –C+K-l C. This relatively small system is then solved directly for M and J. By

solving the system in two steps, the interior solution is decoupled from the incident field Vi,

allowing for efficient solutions when many excitation fields arc present as in monostatic radar cross

section simulations.

The relative numbers of unknowns in H and M (or J) makes the calculation of K-lC the

major computational expense. This operation is the solution of a system of equations, KX = C,

where C is a rectangular matrix with a potentially large number of columns in the case of

electrically large scatterers. The solution is accomplished by using a symmetric variant of the

quasi-minimum residual iterative algorithm. The resulting overall matrix (8) is treated as being

dense, and the solution of this second system is accomplished via a direct dense LU

decomposition, since its size is relatively small.

COLUMN INDEX

6 5b 160 1:0 260 250 360

Figure2. Scat(er plot graphically showing structure
of system of equations. Darkened spaces indicate
non-zero matrix entries.

3. UNSTRUCTURED SPARSE MATRIX DECOMPOSITION

The solution of the large sparse system is the central component of the finite element

simulation. Traditionally, the dependence between mesh data and the resultant sparse matrix data

has been exploited in the development of mesh petitioning algorithms [12–1 5]. These algorithms

break the physical mesh or its graph into contiguous pieces that are then read into each processor of

a distributed memory machine. The mesh pieces are generated to have roughly the same number of

finite elements, and to some measure, each piece has minimal surface area, Since the matrix

assembly routine generates non-zero matrix entries that correspond to the direct interconnection of

finite elements (elements that do not physically touch do not generate a matrix entry), the mesh

partitioning algorithm attempts to create a load balance of the sparse system of equations.

Processor communications in the algorithm that solves the sparse system is meant to be limited by

the ability to minimize the surface area of each mesh piccc.

The algorithm for mesh partitioning typically requires less computational time than the rest

of the finite element simulation, but due to the complexity of the algorithm needed to create good

load balance and minimal processor communication, the development of parallel partitioning codes

can be quite expensive. The complexity results from the irregularity of mesh data inherent in

volumetric finite element modeling. The strategy followed in this paper is to exploit the availability

of a global address space by using compiler constructs to efficiently decompose the matrix data

among processors of the Cray T3D. Because the amount of time needed to perform the matrix

decomposition is a small fraction of the overall simulation time, any minor inefficiencies in using

the shared memory compiler constructs arc relatively unimportant. The matrix equation solution—

the major time expense of the overall simulation-and the calculation of observablcs are

accomplished using message passing algorithms. This strategy allows the use of global addressing

8

constructs to simplify the high complexity but computationally inexpensive portion of the

simulation, i e., the parallel finite element matrix assembly from mesh data, and the use of message

passing algorithms on the portions of the simulation that require high performance. The direct

decomposition of the matrix entries also results in regular data structures that are exploited by

efficient communication patterns in the iterative solver.

In the electromagnetic scattering application considered in this paper, the system of

equations under consideration is complex-valued, symmetric and non-definite. Because the system

has these properties, and bccausc very large systems are considered (systems up to order one-

million) the quasi minimum residual iterative algorithm is used to solve the system [16]. Each row

(or column) of the matrix has a nLIIllbCr of non-zero entries, typically sixteen for the elements

currently being used, and this number is constant, independent of the mesh size, The main

expense of the solution algorithm is the sparse matrix-dense vector multiply that is inherent in this

as in most other Krylov subspace itera(ive algorithms. The matrix decomposition used in this

implementation is based on row slabs of the sparse reordered system. The reordering algorithm is

used to minimim the bandwidth of the sparse system. As Section 4 will outline, this

decomposition and reordering is chosen to minimize communication of the overlapping vector

pieces in the parallel matrix-vector multiply, reduce storage of the resultant dense vector pieces on

each processor, and allow for load balance in storage and computation.

Since the right-hand-side vectors in the parallel sparse matrix equation (KX = C) are the

columns of C, these columns are distributed as required by the row distribution of K. When

setting up the row slab decomposition, K is split by attempting to equalize the number of non-

zeros in each processor’s portion of K (composed of consecut ivc rows of K). The rows in a

given processors portion of K determines the rows of C that processor will contain. As an

example, if the total number of non-zeros in K is nz, a loop over the rows of K will be executed,

counting the number of non-zeros of K in the rows examined. When this number becomes

approximately rzz / P (where P is the number of processors that will be used by the matrix

equation solver), the set of rows of K for a given processor has been determined, as has the set of

rows of C.

The reordering is chosen to minimize and equalize the bandwidth of each row over the

system [17]. Because the amount of data communicated in the matrix-vector multiply will depend

upon the equalization of the row bandwidth, different reordering algorithms have been examined.

The generalized reverse Cuthill-McKcc algorithm (in both the SPARSPAK [17] and the Gibbs-

Poole-Stocknleyer [18] versions) produces an ordering that minimizes system bandwidth, and

equalizes the bandwidth over each row of the matrix. Matrices resulting from objects that were

long and thin, as well as those resulting from spherical objects have been examined. The nested

dissection ordering in [15] could produce a smaller profile of the reordered matrix, but equalization

9

of the row bandwidth was not accomplished; row bandwidths even approaching the matrix order

were found in a few rows of the matrix.

The matrix decomposition code, termed P_SLICE, consists of a number of subroutines.

Initially, the potentially large mesh files are read (READ). Then the connectivity structure of the

sparse matrix is generated and reordered (CONNECT), followed the generation of the complex-

valucd entries of K (FEM), building the connectivity structure and falling the C matrix

(COUPLING). Finally the individual files containing the row slabs of K and the row slabs of C

must be written to disk (WRITE). For each processor that will be used in the matrix equation

solver, one file containing the appropriate parts of both the K and C matrices is written.

3.1 Port to T3D Using C R A F T

Cray Research Adaptive FORTRAN (CRAFT) is used for the matrix decomposition stage

of the simulation. All large arrays are declared using CDIR.$ directives to be shared in either a

block manner or a cyclic manner for the leading dimension, with non-leading dimension distributed

degenerately. Using a block distribution of a matrix of size 256 on 4 processors leads to the first

64 elements residing on processor O, the next 64 elements on processor 1, etc. A cyclic

distribution would lead to processor O having elements (1, 5, 9, . ..). processor 1 having elements

(2, 6, 10, . ..). etc. A two dimensional array with a degenerate distribution of the second

dimension leads to all elements of the array having a given index in the first dimension being on the
same processor, regardless of the index in the second dimension. For example, a two dimensional

array of size (256,10) distributed degenerate] y over the second dimension will have elements

((i,]), (i,2), (i, 10)) all located on the same processor. Which processor this will be is

dependent on the value of i, and the method of distribution over the first dimension.

Routines which could be easily parallclizcd by CRAFT directives were FEM and part of

COUPLING. The directive CDIR$ DO SHARIiI~ was added to the parallclizable loops to

automatical I y distribute the work over al 1 the processors. Other routines that could be executed in

parallel with a combination of CRAFT and message passing included the READ and WRITE

routines. The remaining routines (CONNECT, and a second part of COUPLING) are basically

sequential routines, where only one processor is doing the majority of the work, while using data

spread across many (usually all) processors.

Two files are read in the READ routine, one containing finite element data, and the other

containing integral equation data. The finite element tile is at least an order of magnitude larger

than the integral equation file, and is read by 4 processors. By using these 4 processors, the time

of the READ routine is reduced roughly by a factor of 3 as compared to reading the file with

1 processor. Further reduction in this time may bc possible; however, this factor of 3 is currently

sufficient. In the WRITE algorithm, data is assembled on each processing element and written to

10

,(,

disk. On the T3D, it is faster to assemble a local array and write out that data than to write out a

distributed array directly, since as the number of processors increases, more writes of smaller

amounts of data are being performed, and disk and network contention develops. Scaling beyond

this point quickly leads to diminishing returns from each processor.

Figures 3 and 4 show the performance of P_SLICE over varying numbers of processors

for two different problems. The number of edges is the number of finite element unknowns in the

problem. It maybe observed that for the routines that have been parallelized, doubling the nundxx-

of processors reduces the amount of time by a factor of approximately two. For routines that are

sequential, where only one processor is doing the work using the other processors’ data, the time

goes up very slightly as the number of processors for the overall code arc increased. This is due

strictly to communication latency. As the number of processors increases, the percentage of array

elements which are not local increases, and the time to load or store these elements is longer than

the time to load or store local elements. The 1/0 time should have roughly the same behavior, but

for practical tests the 1/0 time is more dependent on the 1/0 load of the other T3D processors and

the load on the front-end YMP that is between the T3D and the disks than the number of T3D

processors being used in P_SLICE. It is clear that the routines that benefit most from the parallel

implementation on the T3D arc COUPLING and WRITE.

160.00 ~

140.00

120.00

~ 100.00

: 80.00

: 60.()()

40.00

20.00

0.00

r WRITE

■ C O U P L I N G

❑ F E M

❑ CONNECT

-1@=--

T90” 8 “ 16 “ 32 64 128 2 5 6
Number of Processors

Figure 3. Computation time and scaling for a relatively small simulation (dielectric
cylinder with 43,791 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at
2.5 GHz). First column shows time for single processor T90. Times on T90 for
CONNECT and FEM have been combined.

11

,,,

25.00J

20.00 -

~ 15.00 -.—g
?F 1o,oo-

5.00-

0.00 --K-

1 I

■ WRITE

❑ COUPLING

❑ FEM

~ CONNECT
u

❑ READ
—

T90 32 64 128 256
Number of Processors

Figure 4. Computation time and scaling for a relatively large simulation (dielectric
cylinder with 579,993 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at
2.5 GHz). First column shows time for single processor T90. Times on T90 for
CONNECT and FEM have been combined.

4. PARAI.I,EI. SOI,UTION OF PARTITIONED SYSTEM

As outlined above, the partitioned system of equations is solved in two steps, namely

P_SOLVE and P_FIELD. Initially the quasi-minimum residual algorithm [16] is used to solve the

sparse system of equations KX = C, resulting in the reduced sub-matrix Z~. The parallel quasi-

minimum residual solvcr dcvclopcd for this application operates on matrix data decomposed by

row slabs in P_SLIC.E after reordering (Figure 5 shows matrix structure before and after

reordering). The machine is logically considered to be a linear array of processors, with each slab

of data residing in one of the processors. C and X are also decomposed by row slabs,

corresponding to the row partition of the matrix. Ccntrd components of the quasi-minimum

residual algorithm that are affected by the use of a distributed memory machine are the parallel

sparse matrix-dense vector multiply, and dot products and norm calculations that need vector data

distributed over the machine. The dominant component is the matrix-vector multiply, accounting

for approximately 80% of the time required to run P_SOLVE.

A parallel library of the needed level-one BLAS routines was developed using CRAY T3D

.dmenl~mt and .dmwl~et message passing. The routines required by the quasi-minimum

residual algorithm are CDOTU and SCNRM2, and the parallel implementation of these was trivial,

,,,

COL COL
.:-u ‘ ,-. .-
‘-i . . .,W:, .r. . :.:

‘~ ‘~

Figure 5. Original matrix structure (left) and after reordering (right). Filled spots

indicate non-zero entries of matrix.

consisting of a local BLAS call to calculate each processor’s contribution to the result, and a call to

a global sum routine to calculate the final result.

4.2 Parallel Sparse Matrix-Ilense Vector Multiply

The parallel sparse matrix-dense vector multiply involves multiplying the K matrix that is

distributed across the processors in row slabs, each containing a roughly equal number of non-zero

elements, and a dense vector x, that is also distributed over the processors, to form a product

vector y, distributed as is x (Figure 6). Since the K matrix has been reordered for minimum

bandwidth, the minimum and maximum colunm indices of the slab are known. If the piece of the

dense vector x local to this processor has indices within this extent of column indices, the multiply

may be done locally and the resultant vector y will bc purely local. In general, the local row

indices of the dense vector x do not contain the range of column indices; therefore a

communication step is required to obtain the portions of the multiply vector x required by the

column indices of the K matrix. This communication step only requires data from a few

processors to the left and right. The exact number of processors communicating data is dependent

on the row bandwidth of the local piece of K, and the number of processors being used. In the

simulations considered, the number of processors communicating data is typically one or two in

each direction on scaled problems.

This communication could be performed using either shmet~z~e? or shmet~l~wt. These are

one-way communication calls where the processor from whose memory the data is being gathered

or to whose memory the data is being stored, respectively, is not interrupted by the

communication. The s}mwnl~et formulation is more intuitive and simpler to program, but the

13

,..

COMMUNICATION FROM

d

PROCESSOR TO LEFT

‘ I

,,,,:,,,>.:,,.
g

‘$!
,$ ~z:

,. $ x .>:. y =.E . y“)

/
I Y

COLUMNS ‘
j;:,,;:

LOCAL PROCESSOR
%

\

LOCAL PROCESSOR ROWS

ROWS

COMMUNICATION FROM
PROCESSOR TO RIGHT

Figurc6. Local sparse]~latrix-densc vector Illultiply graphically displayed.

communication bandwidth of the shnzel}ljmt routine on the T3D is substantially higher than the

communication bandwidth of the shne)}zget routine. For this reason, the sh?zent~)ut formulation

is used. This formulation requires the cache to be flushed to maintain cache coherency, but the

resulting performance of the matrix-vector multiply is still 15% higher than the performance

obtained using the shn~ef~l~et formulation.

As described previously, the K matrix is stored in row slabs using row-compressed

storage. As K is symmetric, this is equivalent to a column slab decomposition using colunm-

compressccl sloragc. K may be used in either way in the matrix-vector multiply. In this step, a

non-zero in column i requires x(i) to be obtained, and a non-zero in row j will produce a patlial

result for y(j). This implies that K stored in column slabs will require only communication of

portions of y non-local to the processor after the local portion of the multiply, and similarly, K

stored in row slabs will require communication only to gather x before the local portion of the

multiply. Since similar amounts of communication are required using either storage scheme, the

scheme that minimizes the time spent in local work has been chosen for implementation. This is

the row slab decomposition of K, because the row-compressed storage scheme better reuses the

T3D processor’s local cache, and therefore has bct[cr overall performance.

4.2 Performance and Scalability of Parallel Sparse Matrix-Ile~lse Vector Multiply

The goal of the combination reordering-partitioning strategy discussed above is to minimize

as well as equalize communication in P_SOLVE, while retaining memory load balance. The

partitioning chosen clearly succeeds in evenly dividing the data among the processors; Figures 7

and 8 show the relative communication time of the processors.

14

!,, ,

Processo nber

Figure 7. Graph of communication load balance for parallel matrix vector multiply,

271,158 edge dielectric cy]indcr, 32 processors.

Figure 7 shows results representative of the majority of the cases that have been run. All

processors, excepting those on the ends of the linear processor array, have a relatively similar

amount of communication, and since the communication is synchronized, all processors will

require as much time as the one that uses the most t i me. Only the two end processors will be idle

very long at the barrier. For this case, all processors except the first and last have to communicate

with two other processors, one to the left and one to the right.

Figure 8 shows the other possible class of results, shared by a minority of cases that have

been run. Again, the two end processors arc using less time for communication than the majority

of processors. However, in this example, a small subset of the processors are using more time in

communication than the average processor. All the processors except those in this subset have to

wait a substantial amount of time at the barrier, and the speed pcr processor of this run is lower

than that of the first example. Again in this example, all processors but the first and last have to

communicate with at least two other processors, one to the left and one to the right, but here, the

processors in the subset that arc spending more communication time arc communicating with

possibly two processors in either direction. The issue in these few cases is that the decomposition

of the K matrix was performed entirely based on storage load balance, with the assumption that

the reordering would equalize the row bandwidth and create communication load balance. This

assumption is generally valid, as shown in Figure 7, though not always, as shown in Figure 8.

15

1, II

0.9

0.8

5
‘~ 0.6
0.—
c
= 0.5E
E
~ 0.4

0.2

0.1

f-l
Processor Number

Figure8. Graph ofcollllllllt~icatioll load balance forparallel ll~atrix vector 1~~ultiply,

579,993 edge cylinder, 128 processors.

Another factor in the performance of the parallel matrix-vector multiply is the percentage of

communication. This is mainly related to the number of processors to the left and right that each

processor must communicate, and as discussed above, the maximum number that any processor

must communicate with. It is clear that running a fixed size problem on an increasing number of

processors will generate a growing amount of communication. The amount of communication is a

function of how finely the K matrix is decomposed, since its maximum row bandwidth after

reordering is not a function of the number of processors used in the decomposition. If the

maximum row bandwidth is m and each processor in a given decomposition has approximately m

rows of K, then most processors will require one processor in each direction for communication.

If the number of processors used for the distribution of K is doubled, each processor will have

approximately m/2 rows of K. Since the row bandwidth doesn’t change, each processor will now

require two processors in each direction for communication. But since the number of floating

point operations required hasn’t changed, the communication percentage should roughly double.

16

4, ‘1

45

40 + 43791 F

c
o -@–– 166489
“g 35
0.—
c + 271158

~ 30
g

4’ 579993

025-
% /

$20 /

F
a)
Q 15
2

1 0 -
##-

5 -
16 32 64 128 256

Number of Processors

commumcatlon versus number 01 processors lor parallel

for four different size (number of edges) meshes of

which shows communication percentage versus number of

Figure 9. Percentage of . . ,

matrix vector multiply,

dielectric cylinder.

This can be seen in Figure 9,

processors, for four problem sizes.

Figure 10 shows the local rate of operations/scconcl for the parallel matrix vector multiply.

It is measured after communication has been completed. It can be seen that the performance of this

operation is roughly constant, and is not easily identifiable as a function of problem size or number

of processors. To a limited extent, a problem which involved more data on each processor will run

slightly faster than would a problem with less data on each processor, but as Figure 10

demonstrates, this isn’t necessarily true. The storage of the data and how it fits in the T3D’s cache

is more important than the amount of data, and this forces the local performance rate not to be a

simple function of problem size per processor.

Shown in Figure 11 are plots of time to convergence on different numbers of processors

for five different problems. The number of unknowns in the finite element mesh and the number

of columns of C are indicated on the plots. The quasi-minimum residual algorithm was stopped

when the normalized residual was reduced three orders of magnitude for each column of C. With

an initial guess being the zero vector, this results in a normalized residual of 0.190, a value that is

17

1,)

18
— -—--&-

-
16 A

z -

14
g
g 12

m
glo

LLl
$8
n
96 - 9 - 4 3 7 9 1
IL
z -+- 166489

4
+ 271158

2 @ 579993

0 I

16 32 64 128 256
Number of Processors

Figure 10. Local operation rate versus number of processors for parallel matrix

vector multiply, for four different size (number of edges) meshes of the dielectric

cylinder.

sufficient for this scattering problem. Given a fixed communication percentage and a fixed rate for

local work, doubling the number of processors for a given problem would halve the total solution

time. The curves in Figure 11 do not drop linearly at this rate because these assumptions are not

met, as shown by Figures 9 and 10. The decreased amount of work per processor causes the

curves to level off as the number of processors increases.

4.3 Additional Work irl P_SOI.VI{

After each column of K-lC is computed using the quasi-minimum residual algorithm, it

must be multiplied by C+ to obtain the equivalent column of Z~. Each of these multiplies requires

a global communication, since C is distributed over the T3D by row slabs. To reduce the number

of global communications, after a number of columns of K“C are computed, these are multiplied

by C+, and the columns of Z ~ obtained are written out sequentially to disk. The original quasi-

minimum residual algorithm solved a single solution vector at a time. A pseudo-block (multiple

right-hand-side) quasi-IllirliJl~L]]]~ residual variant was written, which performs each quasi-

minimum residual iteration on some number of columns of C simultaneously. As the residual of

18

. 1. t

1

1

1
‘2.—
&_

+ 43791
40

,~ 166489

20 { + 271158

.+ 417359

00 -’-t+-- 579993

80

60

40 3 k

20

0 I 1 I 1 1 1 I 1 1 1

0 64 128 192 256

Number of Processors

l;igurc 11. ‘1’imc of convergence for five diffcmmt problellls. I’k time shown is

tllc total execution time for the solver on diffcrcnl numbers of processors. ‘1’hc C

matrix had 116 columns in cacb case.

c:icb column of K lC converges below the tbrcshold, thiit column is no longer used in the quasi-

minimum rcsiclwil algorithm. ‘Ibis variant performs tbc smlc number of fhaling point operations

as the single rigllt-ll:iil(l -si(lc (Ill;isi-]llilli[lllllll rcsidu;d algorithm, but tbc K matrix is required to be

]():KICC] fM3111 I1lC1ll(NJ’ lllLICb]CSS OftCI1. ‘1’his leads to a time savings of 10–1 5% in P_SO1.Vli.

5 . CA1,CIJI,A’J’ION 01~ OBSIU{VAIII.IH

‘1’hc final code of tbc simulation, P__f ’1 iil ,11, completes the matrix calculation slmwn in

Ik]uation (8) an(i computes observable quantities (Iaciw cross section, near fields, etc.) Af~cr the

z,, , ~.J and ~() submatriccs and \7i Vcctol”(s) m conlpLltcd, and tbc sub-matrix ~k (formed by

I’_ S01 ,VE) is read in from disk, a p:wdlc] dense matrix 1.IJ decomposition algorithm is LIscd to

solve tbc IcclLIccd system [19]. Since this system is mLlclI smaller than tbc larger sparse system

solved above, the 7, matrices may be distribLltcci on a smaller set of processors, cboscn to optimi~e

,*)

the solve time. ‘1’k t i m e ncccicci to s o l v e [ilis systcm compmxi (0 lhc sparse systcm is a smaii

fraction, typically less tium 1%.

~’hc Kkr cross scclion is found from [hc mesh surface equivalent currents E :md ~.

‘1’ilis calculation-an inkgrai over tile surface- is casiiy par:~iicli~.c(i on the processors executing

I’_l/l IiI ,1). If the ra(iar cross sccticm for more thwl onc cxci[a[ion vector is ncc(ie(i (mono-static), a

biock of soiution v e c t o r s arc foun(i, :m(i a b l o c k of ra(iat. c ro s s sections caiculatc(i. I;or

complctcncss 17igurc 12 shows tile ra(iar cross section for the (iicicctric cylinder usc(i in tile

]Ircviolls l“CSllhS; COIll]X1l’iSOIl iS IIKKiC [0 thC Cl[:l;f<() COCiC [2 0] . l~Lll”thC1’ l’CSLlltS O f CaiCllkltCCi

obscrvab]cs may hc foun(i in [10].

6. l) ISCUSSION

ShOwn in Figure 13 is the comparison of time requirements of the three s(agcs of the

simulation, for four (ii ffcrcnt problcm sizes. ‘1’hc problcm simuiateci corrcsponcis to the (iiclcctric

cylinder outlined in previous results. As is clearly shown, the dominant component of the

o

-60

J I I
— CiCERO

106818 edges

\
>

a’,
,

,
> f

1;.

,,

r
o 20 40 60 80 100 120 140 160 1[

THETA ANGLE (deg)

IJigure 12. h~onostatic m(iar cross scc(ion for (iicicctric cylin(icr witil raciius =
1.0 cm, height = 10.0 cm, relative pcrmittivity = 4.0 at 2.5 G}lY.

20

8. ,

70

60

50

-2
“~ 40
-
a)
E 30
i=

20

10

0

I ■ P..SLICE ❑ P - S O L V E ❑ P_FIELD
a

I
-1 L 1 I i IL

100694 271158 417359 579993
Size of problem (edges)

b’iglllc 13. Comp:iriscm of time requirements for three sl:igcs of simulation for four

different problem sizes. The problems correspond to the dielectric cylinder shown in

I:igure 12.

simulation is P S01 .VIi---thc iterative solutiot) of the sparse system. The matrix.
clccol~l~)ositiollstagc (1’_.Sl Jc:li) is r~l~ltivcly sm~lllj while the observable calculation stage

(l’_ l;l [il ,1>) is a minor fraction of the total time. ‘]his last stage can grow if a large number of field

calculations are rccjuircd, but it will typically remain a small fraction of the matrix solution time.

L]sing matrix decomposition by row-slab partitioning following reordering produced data

StrLIC(LlrCS that generally allowcd a balanced matrix-vector multiply in the itcmtivc solver. The data

load balance was almost exactly uniform, while the collltllllllic:itiol~ overhead was moderately small

and similarly uniformly bahinccci over (1IC machine for the majority of problems considcre(i. };or

scaic(i-sizcci prchlcms, t h e collltllLlllic:tti[)]l t ime was 1 5 % O f the tdal mdrix-vectmK)Ll~il]y .

multiply time. livcII bringing this cxpcIIsc CiOWII tO mm tilllc wOll](i IIOt]caci to a lll:ljor

impmvcmcnt in the overall performance of the code. I Iowcver, major improvements arc possible

in two areas: the local muitip]y ami the number of (lll:\si-IlliIlilllllIll rcsi(iuai iterations.

First, the performance cm the loc:tl portion of the sparse matrix-dense vector multiply COLIICi

bc i mim)vcd. ‘1’bis is (icpcncient on the si>arse (iakstorage st rucl urc of the matrix ami how it is

loa(ic(i into the]ocai cache. The relat ivc sparsit y of the rcmxicrc(i row slab of the nuitrix causes tbc

mulliil]y to jumi> around in the cache as it]oacis the clcmcnts of the X vector. If the these local row

21

slabs were rcorcicrcd in such a way as 10 obtain a more dense matrix, the local performance would

increase dramatically.

SCCX@ :111 CffiCiCIlt lXll”il]lC! 131C~011diti011Cl, 0 1 b]OCk it~l”iltiVC SO]VCr COLl]d dCCrC:lSC thC

number of iterations nccclccl in the matrix equation solution. Ndtura]ly, the prcccmciiticmcr 11111s(not

increase either the ovcrhcacl in setting up the problem or obtaining the final solution more than it

S:IVCS by lmvcritlg the iteration coun[. ‘1’hc block solver also musl not incrciisc the time per iteration

more than the aImLm(it s a v e s b y]mvcring (he ilcratim cmlnt. These last two approaches al”c

cLlrrcIlt]y being Cxanlillccl.

'l`tlc:Lllt}lolsw is]~tog l"~itcfl)]]y:)ck[lowlc(igct~lc SU~)lWt of Jcm Patterson, managcrofthc

task l{c,warch itl Parallel Cof)l/)[ll(itiOtl[ll 11(’(ttot)l(lgilt’li(.f, w(1 Mike lICL’OLIX of Clay Rcsca]”ch,

who assistccl in developing atl understanding of various sparse matrix-dense vector multiplication

formulations. ‘llc JPIJCaltccl~ Supcrcomputer used it] this investigation was provided by the
NASA Officcs ofh~issi~Il t[~l~]atlct]~artll, Acr~tl:lll[ics, :[tl(]S]):lcc Scic[lcc. g’llCCl:Iy r] ’90 LlSCC1 ill

this invcs(igatim was ptovi(ic(i by the lnfmmiticm Services I)cpartmcnt of <lay Research.

22

[1]

[2]

[3]

[41

[5]

[6]

[7]

18]

[9]

[1 ()]

[11]

[12]

I<lcl~IcltltNcIts

1,. l~reitag, M . Jones, and P. Plassmann, “]kdk] Algorithms for LJnstructured Mesh

C:c>llll>Llt:itio[l,” C’ol)q)[/tiilg Sy.StrIII.Y i)~ fi;?l~iile(’tiizg, vol. 5, pp. 297-309,1994.

J, Odcn and A. Pat M, “A ParAlcl Ac@(ivc Strategy for hp Finite Iilcment Computation s,”

(.’omput. MtIth[)ds Appl. M(J(II. Etlgrg. , vol. 121, pp. 449–470, 1995.

‘1’. Tcz(lllyal’> S . Aliabadi, M . h4cbr, and S. h4itM, “M~issivcly P~iralkl Finite Elcmen[

Simulation of Chmpmssiblc mcl incompressible I;lows,” C’ot)q)w. Mcthd.v Appl. Mech.

l!’llgl”g., vol. 119, pp. 157-177, 1994.

S . llutchinson, Ii. IIcnscl, S. C:istillo, and K. IXilton, “T}K I;inite }Hcmcnt Solution of

Iilliptical Systems on a IXita I’arallcl Compu(cr,” lilt. J. N[imcv. Methods ill litlgrg., wl. 32,

pp. 347-362, 1991.

A. Chaltcrjec, J. Vo]akis, and l). Windhcidcr, “f’arallc] Computation of 3-11 Iilcctlolllilg[lctic

Scatkring lJsing l;initc l;lcments,” 111[. J . Al[{ttict. ModtI1.: I.’[c([. Net btotk,v, IA’ijice,v (IIM1

)’ield.~, vol. 7, pp. 329--342, 1994.

S. Gcdney and LJ, N;ivsariwakl, “A (hmparison of the Pcrfommce of the I;inite IIiffcrcncc

Tlmc-I)omitl, ljinitc IOecmcnt ‘1’imc l)omain, d Pkinar Gcncralizcd Ycc Algorithms on

1 ligll-I’clforlllallce Parallel Computers,” III(. J . N[{t)l(’t. Mmkl.: E[K[. Net ~~ork.v, lh’~]ices

and J’ields, VO1. 8, pp. 265-275, 1995.

F!. Madsen, “I)ivcrgcncc Prcscrvitlg l)iscrctc Surface integral Methods for Maxwell’s CLIrl

I’k]mtions [Jsing Non-orthogonal LJnstruc[urcd Grids,>’ .I[)[{t”t). of Cottt~). l’}t>’.~ic.v, vo]. 119 ,

pp. 34–45, 1995.

l-J. J i n, 7’/Ic 11’i!litc l;l(’ttlellt M([IIIM1 ill 1<1(’(ttottl(tgtlcti(,v, JobII Wiley ancl Sons, Inc., New

York, 1993.

‘1’. Cwik, C. Zuffacla, and V. Jamncjad “Ii fficicnt Coupling of Finite Ikmcnt and lnkgral

llquation Rcprcscntations for ‘I’lltcc-l)illlcl~si(~~~:ll Mocicling,” h’illile l[ctIKvIl Sojl}twrc for
MiCt”mtw\~e l<flgill(’crifig, ‘1’. ltoh, G. Pclosi, 1’. Silvcstcr, Ikiitors, John Wiley aml Sons ,

inc., to be pubiishe(i SLImmcr] 996.

‘1’. Cwik, ~;. ~uffacia, ami V. Jamtlcjaci, “h40(icling ‘1’illcc-Ilil~~c[~sio[l:[l Sc:ittcrms LJsing a

Couple(i I;inilc Illclllctlt–llltcgliil liquation Rclllcscllt:ltioll,” 11<11< l’r(lII.v. Allt(’jltl(l.v PIY)p{Ig. ,

10 bc publiski April 1996.

C. Zuffada, T. Cwik, an(i V. Jamrmja(i, “Mo(icling Ra(iiat ion with an l; fficicnl }]ybri(i };initc

I;iel~lcllt-Illtcgr:il Ilc]Ll:itioll-W:l\ ’cgLliclc Mocic N40(icling “1’cclmiquc,” Submitk(i to IIXE

‘1’ransactions cm Antennas ami Propagation, 1995.

B . Nmll”-Omi(i, A . Raefsky, ami (i.

~kmcurrent ~ompll(crs,” Altletimll S(K

l.ymnga, “ S o l v i n g]+’initc Iiicmcnt Iiquations on

Mw/I. h’}~~., A. Noor Ikiitcw, pp. 29 1–307, 1986.

23

I.i

[13]

[16]

[17]

[18]

[19]

[20]

A. Pothcn, }1. Simon and K. l,iou, “1’ar(itioning Sparse M:itrices with Iiigcnvec[ors of

Gr:l]~lls,’’ SIAMJ. M:ltlixA t~:ll. Al~l>1.,~’(~l. 11, pp. 430-452, 1990.

B. IIendrickson and R. IJcland, “At~ lmprovcd Spectral Graph P:irtiticming Algorithm for

M:il~~>illgI’:tr:illel Colllj]Llt:~tlli(J1~s,” S/AM./. Sci. Co})lpl{t., vol. 16, pp .452-469, 1995.

G. Karypis and V. Kumar, “A I:ast and]Iigh Quality Multilevel Scheme for Partitioning

lrrc.gular Gmphs,” Whliml Reporl 71{ 9.5-0.?.5, Ikpartment of Computer S c i e n c e ,

University of Minnesota, 1995.

~.];l’~Lllld, “Cmljuga(c Gradient-1’ype h4cttmds for I.incar Systems with COmplex

Symmetric Coefficient Matrices,” SIAM ./. Stal. C(mp(t, vol. 13, no. 1, pp. 425–448, Jan>

1992.

A. George ancl J. I.iu, “~kmlputcl” solution of] ,argc Sparse Positive I]cfillitc systems,”

Prentice }Iall, Ncw Jersey, 1981.

J, l.cwis, “llll~?lcillcllt:tti(~ll Of “1’hc Ciit~os-1’oolc-Stocktllcycr” And Ciibbs-King Algorithms,”

ACM ~’t”(iilS. 0/1 il!l(~th. S(?flw(itr, vol. 8, pp. 180-189, 1982.

‘1’. Cwik, R. van de Gcijn, atld J. Patterson, “Applicaticm of Massively Parallel Computation

to lntcgral Equation Models of lilccllol~l;lgl~ctic Sc:lttcrin,g (Invited P:iper),” 3. Opt. SO(:.

A~)/. A, vol. 11, no. 4, pp. 1538-1545, April 1994.

1.. N. Mcdgcysi-Mitschang atKl J. M. f’utnam, “lilcctl(>ll~:~g[lctic Scattering from Axially

lnhomogcnccws Bodies of Revolution,” 11;1<1 7)utl.vactio)l.v 011 AtIt(~IIIl[~.v ad Propagatioil,

I’ol. A 1’-32, pp. 797--806, 1984.

24

Figure 1.

Figure 2.

Figllle 3.

Figure 4.

Figure 5.

1,1ST OF FIGURJIS

Geometry of scattering problem showing interior and exterior regions of model.

Scatter plot graphically showing structure of system of equations. Darkened spaces

indicate non-zero matrix entries.

Computation time and scaling for a relatively small simulation (dielectric cylinder with

43,791 edges, radius = 1 cm, height = 10 cm, pcrmittivity = 4.0 at 2.5 Gllz). First

colLInln shows time for single processor T90. Times on T90 for CONNECT and FEM

have been combinccl.

Computation time and scaling for a relatively large simulation (dielectric cylinder with

579,993 edges, radius = 1 cm, height = 10 cm, pcrmitlivity = 4.0 at 2.5 GHz). First

column shows time for single processor T90. Times on T90 for CONNECT and FEM

have been combined,

Original matrix structure (left) and after reordering (right). Filled spots indicate non-

zcro entries of matrix.

Figure 6. Local sparse matrix-dense vector multiply graphically displayed.

Figure 7. Graph of communication load balance for parallel matrix vector multiply, 271,158 edge

dielectric cylinder, 32 processors.

Figure 8. Graph of communication load balance for parallel matrix vector multiply, 579,993 edge

cylinder, 128 processors.
I;igure 9. Percentage of communication versus number of processors for parallel matrix vector

multiply, for four different size (number of edges) meshes of dielectric cylinder.

Figure 10. Local operation rate versus number of processors for parallel matrix vector multiply,

for four different size (number of edges) meshes of the dielectric cylincler.

Figure 11. Time of convergence for five different problems. The time shown is the total execution

time for the solver on different numbers of processors. The C matrix had 116 colLmms

in each case.

Figure 12. Monostatic radar cross section for dielectric cylinder with radius = 1.0 cm, height =

10.0 cm, relative pcrmittivity = 4.0 at 2.5 GHz.

Figure 13. Comparison of time requirements for three stages of simulation for four different

problem sizes. The problems correspond to the dielectric cylinckx shown in I;igure 12.

25

SOR Generating

/~
/

IE

Surface Coordinates (t, Q)

Cu SOR Surface

Figure 1. Geometry of scattering problem showing interior and exterior regions of model.

26

20

70

270

320

COLUMN INDEX
,.: .“ -04.. . . m r ,.m — .

“’LAS. . . . ==. .- —:
k=l”: .“-=... :“ “’” “ ‘: ‘~””::

Figure 2. Scatter plot graphically showing structure of system of equations. Darkened spaces

indicate non-zero matrix entries.

27

160.00 ~ WRITE

= COUPLING

❑ FEM

❑ C O N N E C T

❑ R E A D
I

T 9 0 ” 8 ” 16 32 64 128 256
Number of Processors

Figure 3. Computation time and scaling for a relatively small simulation (dielectric
cylinder with 43,791 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at
2.5 GHz). First column shows time for single processor T90. Times on T90 for
CONNECT and FEM have been combined.

28

25.00~

20.00-

= 15.00 -.—
g

?
i= 1 o . o o -

5 . 0 0 -

0.00 -~
T90 “ 32

■ W R I T E

IBll
C O U P L I N G

❑ F E M

H C O N N E C T

64

—

128

—

2 5 6

N u m b e r o f P r o c e s s o r s

Figure 4. Computation time and scaling for a relatively large simulation (dielectric cylinder with

579,993 edges, radius = 1 cm, height = 10 cm, pcrmittivity = 4.0 at 2.5

s h o w s time for single processor T90. Times cm T90 for CONNECT

combined.

G}lz.). First column

and FHM have been

29

COL Col

,: ,I t ‘“:

-1 I
Figure5. Original matrixs tructure(left)and after

-1

reordering (right). Fillecl spots indica 2 non-
zcro entries of matrix.

30

COMMUNICATION FROM

/

PROCESSOR TO LEFT

g
k. “%*
‘~~$~~~~~

‘ I

x =
cc

f

I
\

COLUMNS LOCAL PROCESSOR ROWS

\

LOCAL PROCESSOR ROWS

COMMUNICATION FROM
PROCESSOR TO RIGHT

Figure 6. Local sparse matrix-dense vector multiply graphically displayed.

31

1

0.9

.:0.8
t-
C ().7
o
“~ o,6
.-
C
3 0,5
E
g 0.4
0
~ 0.3

30 0.2
m

0.1

0

Figure 7
dielectric

Processor Number

“aph of communication load balance for parallel matrix vector multiply, 271,158 edge
Iinder, 32 processors.

32

14 II

0.9

c

“: 0.6
0.-C3 0.5
E
E
~ 0.4
-0

$ 0.3
$

0.2

0.1

0

FigLac 8.

cylinder,

Processor Number

Graph of communication load balance for parallel matrix vector

128 processors.

multiply, 579,993 edge

33

45

40 -+- 43791 P

,.. 166489
35

+ 271158

30 /$
579993 /’

25
./”3

,,.
al
c#20- /

z
cl)
Q15-
:

1 0 -
8.:1 –-” m 4. .

51 I I I I

16 32 64 128 256
Number of Processors

Figure 9. Percentage of communication versus number of processors for parallel matrix vector

multiply, for four different size (number of edges) meshes of dielectric cylinder.

1 8 #
n

,,
- , bA

16
~=Z, 4

14
~
0 1 23

6 - 9 - 4 3 7 9 1

166489
4

--&--- 271158

2 579993

O! I I I I
16 32 64 128 256

Number of Processors

Iiigure 10. IJocal operation rate veIsLIs number of processors for parallel matrix vector multiply,

for four different size (number of edges) meshes of the dielectric cylinder.

35

140 -D- 4 3 7 9 1

120 ‘k + 2 7 1 1 5 8
;

--+-- 417359
100 ‘;

F.—
g

-u - - 579993

0 80
E.-
1-

.S 60 . ,,
3
z

m 40

20

0 1 I I 1 I 1
I 1 r 1 1 1 r

o 64 128 192 2:6
Number of Processors

Figure 11. Time of convergence for five ciiffcrent problems. l’hc time shown is the total execution

time for the solver cm different numbers of processors. The C matrix had 116 colLmIns in each

case.

36

1 I
— C I C E R O

106818 edges

\

/

a

o 2 0 4 0 6 0 8 0 100 120 140 160 180
THETA ANGLE (deg)

Figure 12. Mmostatic radar cross section for dielectric cylinder with radius = 1.0 cm, height =

10.0 cm, relative permitlivity = 4.0 at 2.5 GHz.

37

70

60

50

z
“~ 40

.! 30
1-

20

‘1

■ P SLICE ❑ P_SOLVE ❑ P_FIELD—
1

I I I 256 PEs

256 PEs
I I I I—

128 PEs 256 PEs

10=

o-~~ r
I

100694 ‘ 271158 ‘ 417359 “ 579993
Size of problem (edges)

Figure 13. Comparison of time requirements for three stages of simulation for four clifferent

problem sizes. The problems correspond to the dielectric cylinclcr shown in Figure 12.

38

